

Using Mixture Models to Assess Enumerator and Survey Quality: An Extension of Probabilistic Record Linkage

Simon Hoellerbauer

University of North Carolina at Chapel Hill

Research Objectives

Substantive problem:

• Make analysis of survey backchecking—also called field audits or re-interviews—faster, more rigorous, and more efficient

Methodological objective:

• Use mixture models and the probabilistic record linkage framework to put a probabilistic model on the backchecking process

Probabilistic Model

The model is a finite mixture model with two component distributions, each of which is a Multinomial

$$\gamma_i | M_i = m \sim \text{Multinomial}(\pi_m)$$
 $M_i \stackrel{\text{i.i.d.}}{\sim} \text{Bernoulli}(\lambda_e)$
 $\lambda_e = \text{logit}^{-1}(\beta_0 + \beta_e)$
 $\beta_e \sim \mathcal{N}(0, \sigma_e)$

- This model combines the probabilistic record linkage model[1, 2] with the "theory selection" model[3]
- $\bullet \gamma_i$ represents the total agreement vector for the $i^{\rm th}$ survey-backcheck pair.
- \bullet β_e represents random intercepts by enumerators, which contributes to the mixing parameter λ

Simulation Setup

I use actual survey data to simulate backchecks by creating artificial non-matches and disagreements, with some enumerators having more matches than others. I simulate 100 backcheck sets to create agreement matrices for each combination of the following parameters:

 $(\#E) \in \{20, 40\}$ Probability (β_0) $\in \{0.8, 0.9, 0.95\}$ Percent of Respondents Backchecked (%B)

• Number of Enumerators • Overall Match

• Standard Deviation of $\in \{0.05, 0.10, 0.15\}$ $\beta_E (\sigma_e) \in \{1, 2\}$

Model Parameters

Models were estimated using Stan's R interface rstan.

Model Assessment

False Discovery Rate

Survey Evaluation Measures

Respondent Match Probability:

$$\lambda_{e_i} = \text{Logit}^{-1}(\beta_0 + \beta_{e_i})$$

$$\xi_i = \frac{\lambda_{e_i} \prod_{k=1}^K \pi_k^{\gamma_{ik}}}{\sum_{m=0}^1 \lambda_{e_i}^m (1 - \lambda_{e_i})^m \prod_{k=1}^K \pi_{km}^{\gamma_{ik}}}$$

Enumerator Quality:

$$Q_e = \frac{\sum_{i_e}^{N_e} \xi_{i_e}}{N_e}$$

Survey Quality:

$$Q_S = \frac{\sum_i^N \xi_i}{N}$$

Conclusion

- Mixture models and agreement vectors can be used to facilitate backchecking
- However, when there are a large number of errors and a small proportion of an enumerator's respondents are chosen, the model does not perform as well

Next Steps

- Transition to treating agreement vector as a series of categorical variables, which would make it possible to identify variables that are consistently incorrect across backchecks
- Investigate use of responsibilities as survey weights to avoid discarding data

Email: hoellers@unc.edu

References

[1] Ivan P. Fellegi and Allan B. Sunter.

A theory for record linkage.

Journal of the American Statistical Association, 64(328):1183–1210, 1969.

[2] Ted Enamorado, Benjamin Fifield, and Kosuke Imai.

Using a probabilistic model to assist merging of large-scale administrative records.

American Political Science Review, pages 1–19, 2018.

[3] Kosuke Imai and Dustin Tingley. A statistical method for empirical testing of competing theories.

American Journal of Political Science, 56(1):218–236, 2012.